The Schouten - Nijenhuis bracket, cohomology and generalized Poisson structures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Look at the Schouten-Nijenhuis, Frölicher-Nijenhuis and Nijenhuis-Richardson Brackets for Symplectic Spaces

In this paper we re-express the Schouten-Nijenhuis, the Frölicher-Nijenhuis and the Nijenhuis-Richardson brackets on a symplectic space using the extended Poisson brackets structure present in the path-integral formulation of classical mechanics.

متن کامل

Z-graded extensions of Poisson brackets

A Z-graded Lie bracket { , }P on the exterior algebra Ω(M) of differential forms, which is an extension of the Poisson bracket of functions on a Poisson manifold (M,P ), is found. This bracket is simultaneously graded skew-symmetric and satisfies the graded Jacobi identity. It is a kind of an ‘integral’ of the Koszul-Schouten bracket [ , ]P of differential forms in the sense that the exterior d...

متن کامل

Generating Operators of the Krasil’shchik-schouten Bracket

It is proved that given a divergence operator on the structural sheaf of graded commutative algebras of a supermanifold, it is possible to construct a generating operator for the Krashil’shchik-Schouten bracket. This is a particular case of the construction of generating operators for a special class of bigraded Gerstenhaber algebras. Also, some comments on the generalization of these results t...

متن کامل

Algebraic Nijenhuis operators and Kronecker Poisson pencils

This paper is devoted to a method of constructing completely integrable systems based on the micro-local theory of bihamiltonian structures [GZ89, GZ91, Bol91, GZ93, GZ00, Pan00, Zak01]. The main tool are the so-called microKronecker bihamiltonian structures [Zak01], which will be called Kronecker in this paper for short (in [GZ00] the term Kronecker was used for the micro-Kronecker structures ...

متن کامل

Generalized Classical Brst Cohomology and Reduction of Poisson Manifolds

In this paper, we formulate a generalization of the classical BRST construction which applies to the case of the reduction of a poisson manifold by a submanifold. In the case of symplectic reduction, our procedure generalizes the usual classical BRST construction which only applies to symplectic reduction of a symplectic manifold by a coisotropic submanifold, i.e. the case of reducible “first c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1996

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/29/24/023